If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+20x=350
We move all terms to the left:
7x^2+20x-(350)=0
a = 7; b = 20; c = -350;
Δ = b2-4ac
Δ = 202-4·7·(-350)
Δ = 10200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10200}=\sqrt{100*102}=\sqrt{100}*\sqrt{102}=10\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{102}}{2*7}=\frac{-20-10\sqrt{102}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{102}}{2*7}=\frac{-20+10\sqrt{102}}{14} $
| 9r-15=22 | | x-15.3=4.2 | | 2*6+3y=2 | | 4(13/2+3x)=2x+6 | | 2(1+x)=15-4x | | 25+3x=9+4x | | 92=6x-2+2x | | 3(x+1/2)=3(x+4/5) | | 2(x-7)+2x=-2 | | 12-a+3a=4 | | x+1/5=-1/4(20x-244/5) | | X+3+2x+3=3=3(x+2) | | 17x+18=58 | | x+1/5=-1/4(20x-244/5 | | -2x^2-16x+936=0 | | 4(3y-4)+7y=4y+14 | | x+1/5=-1/4(20x-24/5) | | 6(4x-5)=7(2x-10) | | 40c^2=5c | | 5.4=x+3.3 | | 2(-x-6)=20 | | 18y+18=12 | | 2x-7=3x+15 | | s(s-8)(s+15)=0 | | x+21+x+61x+23=180 | | 33=-9(6h-4) | | 2x-1/4(x+1/3)=3(x+1/6) | | 2(x=1)/3-x-1/6=1 | | 2x+3=2(x+1.5) | | 16(.5x+2)=3x | | 10x-5x+150=10x+80 | | 0=20+10t-4.905t² |